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Abstract 
 

The effect of uniform magnetic field acting vertically upward on the onset of steady buoyancy driven convection in a 

horizontal layer of liquid is investigated, using the classical linear stability analysis. Both the lower and upper boundary 

surfaces of the liquid layer are considered to be insulating and permeable. The Galerkin method is used to obtain the 

eigenvalue equation which is then computed numerically. It is observed that the limiting cases of the permeable 

parameters include various combinations of the hydrodynamic boundary conditions as special cases, in the presence of 

the magnetic field. Results of this analysis indicate that the uniform magnetic field has the stabilizing effect on the onset 

of convection. Further, the asymptotic behavior of the critical Rayleigh number for large values of the Chandrasekhar 

number is also obtained.  
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1. Introduction 

Stimulated by Bénard’s [1, 2] experiments, Rayleigh [3] studied the dynamic origin of the onset of 

thermal convection in a horizontal layer of liquid and laid down the theoretical foundation of 

buoyancy driven convection. Rayleigh’s theory was extended and generalized by Jeffreys [4], Low 

[5] and Pellew and Southwell [6]. Further, Chandrasekhar [7] studied the onset of thermal convection 

in an electrically conducting fluid layer for conducting case of the hydrodynamic boundary 

conditions to include the effect of uniform vertical magnetic field and established that magnetic field 

has stabilizing effect on the onset of stationary convection. Nakagawa [8] carried out experimental 

investigations of the problem in the presence of magnetic field. For a detail study and recent 

developments in this regard, one may be referred to the excellent research monographs, articles or 

review articles, notably by Drazin and Reid [9], Banerjee and Gupta [10] and Nield [11]. Recently, 

the effect of uniform vertical magnetic field on the onset of convection driven by both buoyancy and 

surface tension has been studied by Gupta and Dhiman [12] for thermally conducting case, and by 

Gupta and Surya [13] for thermally insulating case of the lower rigid boundary.    
 

In this paper, we investigate the effect of uniform magnetic field on the onset of buoyancy driven 

thermal convection in the more general framework of the insulating permeable boundary conditions, 

using the classical linear stability analysis. The present analysis extends the work of Gupta and Kalta 

[14] to include the effect of uniform vertical magnetic field in an electrically conducting layer of 

liquid. The Galerkin method is used to obtain the eigenvalue equation analytically. The numerical 

results obtained for a wide range of the permeable boundary parameters and prescribed 
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Chandrasekhar number Q are presented. It is observed that the limiting cases of the permeable 

parameters include various combinations of the hydrodynamic boundary conditions namely, when 

both boundaries are dynamically free and when both boundaries are rigid and when either one is 

dynamically free while other one is rigid, as special cases in the presence of magnetic field. The 

results of this analysis indicate that the uniform vertical magnetic field has stabilizing effect on the 

onset of buoyancy driven convection in the more general framework of hydrodynamic boundary 

conditions. It is interesting to note that the critical wave number on the onset of convection is found 

to be zero. The asymptotic behavior of the critical Rayleigh number for large values of the 

Chandrasekhar number is also obtained.  

2. Formulation of the Problem 

We consider an infinite horizontal layer of viscous, incompressible and electrically conducting fluid 

of uniform thickness d  heated from below, in the presence of uniform magnetic field H acting 

opposite to gravity g , whose both boundary surfaces are insulating and permeable. We choose a 

Cartesian coordinate system with x and y axes in the plane of the lower boundary and positive 

direction of the z axis along the vertically upward direction so that the fluid layer is confined 

between the planes at 0z   and  z d . A uniform temperature gradient is maintained across the 

layer by maintaining the lower boundary surface at a uniform temperature 
0T  and the upper one at 

temperature
1 T . Following the usual procedure for obtaining the linearized perturbation equations 

(Chandrasekhar [15]), the non-dimensional form of the governing equations are given as 

 

  

2 2 2 2 2 2 2( )( ) (D a ) ,zD a D a p w Q Dh Ra      

                                                                        

(2.1) 

 

   

2 2( ) ,rD a p P w                                                                                                                  (2.2) 

 

  
2 2( ) .m zD a p P h Dw                                                                                  (2.3) 

 

where w  is the z-component of the perturbation velocity,   is the temperature perturbation, 
zh   is 

the z-component of the perturbation from the uniform vertical magnetic field H , a  is the horizontal  

wave number,  ( / )rP    is the thermal Prandtl number, ( / )mP    is the magnetic Prandtl 

number, 2 4( / 4 )eQ H d   is the Chandrasekhar number, 4( / )R g d   is the Rayleigh 

number,  is the volume coefficient of thermal expansion, 
0 1( ) /T T d    is the maintained 

temperature gradient, g is the gravitational acceleration,   is the kinematic viscosity,   is the 

thermal diffusivity,   is the magnetic resistivity, e  is the magnetic permeability, 
r ip p ip   

represents the growth rate of perturbations (a complex constant in general), as
rp  and  

ip  are real 

constants, and  /D d dz . We have chosen d , 2 /d  , / d  and  /d    as the units of length, time, 

velocity and temperature respectively. 

 

Since both the lower and upper boundary planes are fixed, thermally insulating and electrically 

conducting, the associated boundary conditions are 

   0w ,  𝐷𝜃 = 0  and ℎ𝑧 = 0   at 0z    and 1z  .                                                                           (2.4) 

 

Further, as both upper and lower boundary surfaces of the liquid layer are considered to be 

permeable on which the boundary condition as specified by Beavers and Joseph [16] is applicable. 

As described by Gupta et al. [17], the appropriate permeable boundary conditions are given by 

   
2

0 0D w K Dw  , at 0z  ,                                                                                                              (2.5)  
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2

1 0D w K Dw  , at 1z  .                                                                                                               (2.6) 

Where 
0K  and 

1K  are non-negative dimensionless parameters, characterizing the permeable nature of 

the lower and upper boundary respectively. 

Eqns. (2.1) - (2.3) together with boundary conditions (2.4) - (2.6) pose an eigenvalue problem. We                                                      

restrict our analysis to the case when the marginal state is stationary so that the marginal state is 

characterized by setting 0p   in Eqns. (2.1) - (2.3) and hz is eliminated from the resulting equations, 

we obtain 

 

      
2 2 2 2 2[( ) QD )]D a w Ra    ,                                                                                                                              (2.7) 

    
2 2( ) .D a w                                                                                                                                                      (2.8)                                            

                        

Eqn. (2.7) - (2.8) together with boundary conditions (2.4) - (2.6) constitute an eigenvalue problem 

of order six. 

3. Solution of the Problem 

The single term Galerkin method is convenient for solving the present problem (Finlayson [18]). 

Accordingly, the unknown variables w and  are written as 

 

      1w Aw      and  
1B                                                                        (3.1) 

 

in which A and B are constants and 
1w  and 

1  are the trial functions, which are chosen suitably 

satisfying the boundary conditions (2.4) - (2.6). Multiplying Eqn. (2.7) by w and Eqn. (2.8) by ,
 

integrating the resulting equations with respect to z from 0 to 1 using the boundary conditions (2.4) - 

(2.6). Substituting for w and   from (3.1) and eliminating A and B from resulting system of 

equations, we obtain the following system of linear homogeneous algebraic equations: 

 

  
2 2 2 2 2 2 4 2 2

1 1 0 1 1 1 1 1 1[ ( (1)) ( (0)) ( ) (2 Q)( ) ( ) ] 0K Dw K Dw D w a Dw a w A Ra w B           ,                  (3.2) 

 
2 2 2

1 1 1 1( ) ( ) 0w A D a B         .                                                                                                      (3.3) 

 

The system of equations given by Eqns. (3.2) - (3.3) will have a non-trivial solution if and only if 

2 2 2 2 2 2 4 2 2 2 2

1 1 0 1 1 1 1 1 12 2

1 1

1
[ ( (1)) ( (0)) ( ) (2 Q)( ) ( ) ][ ( ) ( ) ]R K Dw K Dw D w a Dw a w D a

a w
 


          

 
(3.4) 

Where   denotes integration with respect to z from z = 0 to z =1. 

 

We select the trial functions satisfying the boundary conditions given by Eqns. (2.4) - (2.6) as 

 

4 3 20 1 0 1 0 1 1
1

0 1 0 1 0 1 0 1 0 1 0 1

5 3 12 ( 6) 6
2 2

4( ) 12 4( ) 12 4( ) 12

K K K K K K K
w z z z z

K K K K K K K K K K K K

    
   

        
,                (3.5) 

1 1  .                                                                                                                                 (3.6) 

 

Substitution of trial functions given by Eqns. (3.5) - (3.6) into the Eqn. (3.4) yields R  in terms of ,a

0 ,K  
1K  and Q given by 
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



2

0 1 1

0 1 1 0 1 1

2 2

1 1 0 1 1 0 1 1

4 2

1 1 0 1 1 0 1 1

10

7{ ( 9) 9( 8)}

504{ ( 4) 4( 3)}{ ( 9) 9( 8)}

12(2 Q)[72{ ( 13) 51} 3 {5 ( 14) 312} { ( 15) 72}]

[76 ( 15) {17 ( 16) 1140} { ( 17) 76} 4464] .

R
K K K

K K K K K K

a K K K K K K K K

a K K K K K K K K

 
  

     

         

        

                   (3.7) 

For given values of 
0 ,K  

1K  and Q, Eqn. (3.7) gives the Rayleigh number R  as a function of wave 

number a . The minimum of  R  is the critical Rayleigh number
cR  and the value of  a  at which R  

attains minimum is the critical wave number.  

4. Numerical Results and Discussion 

 

A close observation of the expression for R given by Eqn. (3.7) shows that  R  attains its minimum 

when 0a   for any fixed values of 
0 1, andK K Q . We put 0a   on the right hand side of the 

expression for R in Eq. (3.7) and obtain its minimum
cR as given by

 

    

0 1 0 1

0 1 0 1

2

1 1 0 1 1 0 1 1

2

0 1 1

4( ) 12
720

9( ) 72

72{ ( 13) 51} 3 {5 ( 14) 312} { ( 15) 72}120
Q .

7 { ( 9) 9( 8)}

c

K K K K
R

K K K K

K K K K K K K K

K K K

   
  

   

        
  

   

                           (4.1) 

When Q = 0, the expression given by Eq. (4.1) becomes identically same as that obtained by Gupta 

and Kalta [14] in absence of the magnetic field.  
 

Table 1: Values of Rc for various values of K0 and K1 when Q = 0, 1, 10, 10
2
 and 10

6
. 

  𝑸 = 𝟎 𝑸 = 𝟏 𝑸 = 𝟏𝟎 𝑸 = 𝟏𝟎𝟐 𝑸 = 𝟏𝟎𝟔 

K0 K1 Rc Rc Rc Rc Rc 

0 0 120.00 132.14 241.43 1334.29 12.14×10
6 

0 1 142.22 154.45 264.51 1365.03 12.23×10
6 

0 10 231.11 244.33 363.27 1552.69 13.21×10
6 

0 10
2 

305.19 320.01 453.47 1788.10 14.83×10
6 

0 10
6 

320.00 335.24 472.38 1843.81 15.24×10
6 

1 0 142.22 154.45 264.51 1365.03 12.23×10
6 

1 1 166.15 178.43 288.89 1393.54 12.27×10
6 

1 10 262.54 275.67 393.83 1575.43 13.13×10
6 

1 10
2 

343.68 358.36 490.49 1811.83 14.68×10
6 

1 10
6 

360.00 375.09 510.86 1868.57 15.09×10
6 

10 0 231.11 244.33 363.27 1552.69 13.22×10
6 

10 1 262.54 275.67 393.83 1575.43 13.13×10
6 

10 10 392.73 406.26 528.03 1745.74 13.53×10
6 

10 10
2 

507.01 521.89 655.93 1996.31 14.89×10
6 

10 10
6 

530.53 545.82 683.44 2059.61 15.29×10
6 

10
2 

0 305.18 320.02 453.47 1788.10 14.83×10
6 

10
2 

1 343.68 358.36 490.49 1811.83 14.68×10
6 

10
2 

10 507.01 521.89 655.93 1996.31 14.89×10
6 

10
2 

10
2 

655.72 671.98 818.37 2282.26 16.27×10
6 

10
2 

10
6 

686.97 703.67 853.94 2356.67 16.70×10
6 

10
6 

0 320.00 335.24 472.38 1843.81 15.24×10
6 

10
6 

1 360.00 375.09 510.86 1868.57 15.09×10
6 

10
6 

10 530.53 545.82 683.44 2059.61 15.29×10
6 

10
6 

10
2 

686.97 703.67 853.94 2356.67 16.70×10
6 

10
6 

10
6 

720.00 737.14 891.43 2434.29 17.14×10
6 
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The numerical values of the critical Rayleigh number ,cR  obtained using the Eqn. (4.1) with the 

aid of symbolic algebraic package Mathematica, for various assigned values of the parameters 

0 1,K K and Q , are presented in Table 1. From Table 1, we observe that an increase in the value 

of Q leads to an increased value of Rc indicating that the magnetic field has stabilizing effect on 

the onset of convection, for assigned values of the pair 
0 1( , ).K K  On the other hand, for a 

prescribed value of Q, we observe that for a fixed value of either one of the parameters K0 or K1, 

an increase in the value of other one has stabilizing effect on the onset of convection. 

 

Fig. 1 illustrates the variation of 
cR  with 

0K for various prescribed values of 
1K  and Q. It clearly 

shows that increasing values of 
0 1(or )K K  for a fixed value of Q has the stabilizing effect on the 

onset of convection. Also, Fig. 1 shows that an increase in the value of Q leads to an increased 

value of 
cR , for a fixed value of 

1K , indicating that the magnetic field strength has stabilizing 

effect on the onset of convection. 

 

 
         Figure 1: Variation of 

cR with 
0K  for various values of 

1K  when Q = 0 and 100. 

  

4.1 Limiting Cases 

From Table 1, we observed that various limiting cases of the permeable parameters  0K  and  1K  

give rise to different combinations of hydrodynamic boundary conditions namely, when both 

lower and upper boundaries are dynamically free that is, (
0 0K   and

1 0K  ) or when both 

lower and upper boundaries are rigid (
0K   and 

1K  ) or when the lower boundary is free 

while upper one is rigid that is, (
0 0K   and 

1K  ) or when the lower boundary is rigid while 

upper one is free that is, (
0K   and 

1 0K  ), in presence of the magnetic field Q described as 

follows.  

Case 1. When  
0 0K   and

1 0K  , that is, when both boundaries are dynamically free (free-

free). In this case, from Eq. (4.1), we find that 

85
120

7
cR Q  .                                                                                                                           (4.2) 

We find numerically that the asymptotic behavior of the critical Rayleigh number crucially 

depends on Q. In this case 12.14cR Q  when Q  . 
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Case 2. When either 
0 0K   and 

1K  , that is, when the lower boundary is free while upper 

one is rigid (free-rigid) or when 
0K   and 

1 0K  , that is, when the lower boundary is rigid 

while upper one is free (rigid-free). In this case, from Eq. (4.1), we find that 

320
320

21
cR Q  .                                                                                                                         (4.3) 

The expression given by Eq. (4.3) is identically same as that obtained by Gupta and Surya [13] 

corresponding to the classical case of linear stability analysis. Further, we find numerically that 

the asymptotic behavior of the critical Rayleigh number crucially depends on Q . In this case 

15.24cR Q  when Q  . 

Case 3. when  
0K  and 

1K  , that is, when both boundaries are rigid (rigid-rigid). In this 

case, from Eq. (4.1), we find that  

120
720

7
cR Q  .                                                                                                                        (4.4) 

We find numerically that the asymptotic behavior of the critical Rayleigh number crucially 

depends on Q . In this case 17.14cR Q  when Q  .                                                                                                              

The stabilizing effect of the magnetic field Q on the onset of convection for various limiting 

cases of 
0K  and

1K described above, is shown in Fig. 2. 

  

          
                  Figure 2: Variation of Rc as a function of Q for limiting cases of K0 and K1. 

 
 

In addition, we consider a new theoretical case of possible practical interest which has not been 

discussed in literature so far despite its importance in problems related to science, engineering 

and technological fields. In this case, we consider that value of either of the two parameters 

characterizing the permeability varies inversely to that of the other in the presence of magnetic 

field. We let 1

1 0K K  , Eq. (4.1) then yields 

     

2

2 4 3 2

0 0 0 0 0 0

2 2
0 0 0 0

4 13 4 72 951 3883 951 72120
720

9 73 9 7 (9 73 9)
c

K K K K K K
R Q

K K K K

       
    

       

                      (4.5)                                                                                                                                              

In Table 2, we have listed the numerical values of 
cR  for various values of Q and 

0K . From Table 

2, we observe that for a prescribed value of 
0K , 

cR  increases with increase in Q, indicating the 

stabilizing effect of the magnetic field. Also, Table 2 shows that for a prescribed value of Q, as 

0K  increases from 0  to ∞, 
cR first decreases, attains its lowest minimum at

0 1K  , and then 

increases. In other words, increasing value of the permeability parameter 
0K  from 0 to 1 has 
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destabilizing effect whereas increasing the value of 
0K  from 1 onwards it has stabilizing effect 

on the onset of convection, in the presence of magnetic field. 

  
           Table 2: Values of 

cR  for various values of Q and 
0K . 

 Q = 0 Q = 1 Q = 10 Q = 10
2
 Q = 10

6
 

K0 Rc Rc Rc Rc Rc 

10
-10 

10
-1 

1 

1.1 

10 

10
2 

10
6
 

320.000 

234.582 

166.154 

166.292 

234.582 

305.613 

319.998 

335.238 

247.785 

178.428 

178.567 

247.785 

320.440 

335.236 

472.381 

366.609 

288.893 

289.043 

366.609 

453.884 

472.379 

1843.810 

1554.850 

1393.540 

1393.800 

1554.850 

1788.330 

1843.800 

15.24×10
6
 

13.20×10
6
 

12.27×10
6
 

12.28×10
6
 

13.20×10
6
 

14.83×10
6
 

15.24×10
6
 

 

Further, asymptotically critical values of the Rayleigh number for large values of the 

Chandrasekhar number (𝑄 → ∞ ) are found to be 2

cR Q  for any prescribed value of the 

parameter K0 . 

        
Figure 3: Variation of 

cR  
with 

0K  
for various values of Q. 

 

Fig. 3 illustrates the variation of 
cR  with 

0K , for various values of Q. It clearly shows that the 

magnetic field strength has stabilizing effect on the onset of convection. Also, from Fig. 3, we 

observe that increasing values of  
0K  from 0 to 1 has the destabilizing effect on the onset of 

convection and that the system becomes most unstable when
0 1K  , for any prescribed value of 

Q. 

5. Conclusions 

The problem of onset of buoyancy driven thermal convection in a liquid layer heated from below 

in the presence of uniform vertical magnetic field with insulating permeable boundaries has been 

studied theoretically, using the classical linear stability analysis. We conclude that  

1. The magnetic field strength always has stabilizing effect on the onset of convection in the more 

general framework of the hydrodynamic boundary conditions. 
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2. In presence of the magnetic field, for a fixed value of any one of the two permeability parameters 

0K or 
1K , increasing values of the other one has stabilizing effect on the onset of convection. It is 

interesting to note that the critical wave number on the onset of convection is found to be zero. 

3. For the case when 1

1 0K K  ,  increasing value of the permeability parameter 
0K  from 0 to 1 has 

destabilizing effect whereas increasing the value of 
0K  from 1 onwards it has stabilizing effect 

on the onset of convection, in the presence of magnetic field. 

4. The asymptotic behavior of the critical Rayleigh number Rc obtained numerically for large values 

of the Chandrasekhar number is found to be 2

cR Q , in the more general framework of thermal 

as well as hydrodynamic boundary conditions.  
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